Numerical Study of Thermo-Electric Conversion for TEG Mounted Wavy Walled Triangular Vented Cavity Considering Nanofluid with Different-Shaped Nanoparticles
نویسندگان
چکیده
The effects of the combined utilization wavy wall and different nanoparticle shapes in heat transfer fluid for a thermoelectric generator (TEG) mounted vented cavity are numerically analyzed. A triangular wave form is used, while spherical cylindrical-shaped alumina nanoparticles used water up to loading amount 0.03 as solid volume fraction. impacts amplitude on flow output power features significant compared those number. increment generated range 74.48–92.4% when varied. shape effective rise TEG power, by using nanoparticles, higher powers produced ones. highest achieved 50.7% with particles, it only 4% spherical-shaped Up 194% attained including flat-walled pure fluid.
منابع مشابه
Lattice Boltzmann method for MHD natural convection of CuO/water nanofluid in a wavy-walled cavity with sinusoidal temperature distribution
In this paper, natural convection heat transfer of CuO-water Nanofluid within a wavy-walled cavity and subjected to a uniform magnetic field is examined by adopting the lattice Boltzmann model. The left wavy wall is heated sinusoidal, while the right flat wall is maintained at the constant temperature of Tc. The top and the bottom horizontal walls are smooth and insulated against heat and mass....
متن کاملNumerical study of a combined convection flow in a cavity filled with nanofluid considering effects of diameter of nanoparticles and cavity inclination angles
The present paper focuses on problem of mixed convection fluid flow and heat transfer of Al2O3-water nanofluid with temperature and nanoparticles concentration dependent thermal conductivity and effective viscosity inside Lid-driven cavity having a hot rectangular obstacle. The governing equations are discretized using the finite volume method while the SIMPLER algorithm is employed to couple v...
متن کاملNumerical Investigation into Natural Convection and Entropy Generation in a Nanofluid-Filled U-Shaped Cavity
This current work studies the heat transfer performance and entropy generation of natural convection in a nanofluid-filled U-shaped cavity. The flow behavior and heat transfer performance in the cavity are governed using the continuity equation, momentum equations, energy equation and Boussinesq approximation, and are solved numerically using the finite-volume method and SIMPLE C algorithm. The...
متن کاملdevelopment of different optical methods for determination of glucose using cadmium telluride quantum dots and silver nanoparticles
a simple, rapid and low-cost scanner spectroscopy method for the glucose determination by utilizing glucose oxidase and cdte/tga quantum dots as chromoionophore has been described. the detection was based on the combination of the glucose enzymatic reaction and the quenching effect of h2o2 on the cdte quantum dots (qds) photoluminescence.in this study glucose was determined by utilizing glucose...
Numerical Study of Natural Convection in an Inclined Cavity with Partially Active Side Walls Filled with Cu-water Nanofluid
The buoyancy-driven fluid flow and heat transfer in a square cavity with partially active side walls filled with Cu-water nanofluid is investigated numerically. The active parts of the left and the right side-walls of the cavity are maintained at temperatures Th and Tc, respectively, with Th>Tc. The enclosure’s top and bottom walls, as well as, the inactive parts of its side walls are kept insu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2023
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11020483